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Abstract

This paper shows a computational method for optimizing the location of

one store on a network, assuming that users probabilistically choose stores

following the Huff model (Huff, 1963) and that the store can be located on

a continuum of a network. This method gives the exact globally optimal

solution with the computational order of n2
L log nL where nL is the number

of links of the network.

Keywords: locational optimization, network, Huff’s model, shortest

path distance
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1 Introduction

The objective of this paper is to develop a computational method for

optimizing the location of one store on a network, assuming that users

probabilistically choose stores following the Huff model (Huff, 1963) and

that the store can be located on a continuum of a network.

In the literature of Operations Research, we can find many papers re-

lated to locational optimization on a network, such as the median prob-

lem (Hakimi, 1964). In the median problem, it is proved that an optimal

location exists at a node of a network (Hakimi, 1963). Thus we can ob-

tain the optimal location by searching all nodes of the network. In the

locational optimization with the Huff model, however, the optimal loca-

tion may be at a point on links of the network (not always at a node).

Since the number of locatable points is infinite, we cannot find an opti-

mal location by searching all these points. We should develop an efficient

computational method for this optimization. In this paper, we propose

this method. First, using the Huff model, we explicitly formulate the

demand for a store as a mathematical function, assuming that consumers

are distributed over links; the distance between two points on a network

is measured by the shortest path distance. Second, using this demand

function, we show a method for finding the globally optimal location, at

which the store can attain the maximum demand.

2 The Locational Optimization Problem of

a Store on a Network

We wish to find the point on a network at which a store maximizes its

profit. Under the assumption of a constant marginal cost, maximizing

profit is equivalent to capturing maximum demand. In this paper, we

develop a method for finding the location at which the store attains the
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maximum demand.

We consider a network N in which n − 1 stores, labelled store 1, . . .,

store n−1, are located. Given these stores, we optimize the location of a

new store, store n, on N . Let Pn(p) be the probability that a consumer at

an arbitrary point, p, chooses store n at pn; w(p) be the demand density

at p. Then, the amount, D(pn), of demand for store n is given by

D(pn) =
∑
p∈N

Pn(p)w(p). (1)

We assume that the probability Pn(p) is given by the Huff model

(1963). To be explicit, let ai be the attractiveness of store i (which

may be measured by, for example, the area of the store and the number

of items); d(p, pi) be the shortest path distance between a consumer at p

and store i at pi; F (d(p, pi)) be the distance deterrence function, i.e., F

is a monotonously decreasing function with respect to the shortest path

distance, d(p, pi), between p and pi. Then, the Huff model is written as

Pn(p) =
anF (d(p, pn))∑n
i=1 aiF (d(p, pi))

, (2)

where the distance deterrence function is usually given by

F (d(p, pi)) = exp(−λd(p, pi)), λ > 0, (3)

(Wilson, 1970). We call this model network Huff model (Miller, 1994, and

Okabe & Okunuki, 1997).

Using the network Huff model, we formulate the optimization problem

mentioned above. Let x and xi be the location vectors of p and pi respec-

tively; L be the set of nL links of N ; Xl be the set of points forming link l

on N ; X be the set of points forming N (X = X1∪X2∪ . . .∪XnL
). Using

equation (1) with equations (2) and (3) into, we formulate the problem

of maximizing the demand of store n as follows.

Locational Optimization Problem of a Store on a Network:

max
xn∈X

D(xn) =
∑
l∈N

∫
x∈Xl

an exp(−λd(x, xn))∑n
i=1 ai exp(−λd(x,xi))

w(x)dx. (4)
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When all of the location vectors x1, . . . , xn are fixed, we can obtain

the integration in equation (4), as is shown in Okabe & Okunuki (1997).

In equation (4), however, xn is a variable, and hence we have to obtain

the function D(xn) of xn (not a value of the integration). In the next

section, we show how to obtain the function D(xn).

3 The Integration of the Demand Equation

The integration of equation (4) requires a fairly long derivation, which

is divided into the following four steps.

Step 1 (See Figure 1)

Step 1 is to obtain the shortest paths from an arbitrary point p to store

1, . . . , store n − 1 on N .

Let N be the set of nN nodes of network N ; Ns be the set of nodes at

which n − 1 stores are located (Ns ⊆ N); L be the set of nL links of N .

First, we construct the shortest path tree, Ti, rooted at each existing

store at pi (i = 1, . . . , n − 1) on N . This construction can be efficiently

done by the Dijkstra’s shortest path tree algorithm (Dijkstra, 1959, Freed-

man & Tarjan, 1984). Let Li be the set of links forming Ti. On each link

lj ∈ (L \ Li) with end nodes pj1 and pj2, there always exists one point,

qji, satisfying that the shortest path distance from store i to the point qji

through pj1 is equal to that through pj2 of lj . We call such points collision

points produced by pi (Okabe & Kitamura, 1996). We obtain collision

points for all links in (L \ Li) for all existing stores (i = 1, . . . , n − 1).

Having obtained a collision point on link l, we next insert the point as

a node and break l into two links at the collision point. This insertion

gives a modified network, denoted by N+. We denote the set of nodes of

N+ by N+ and the set of links N+ by L+, and index the elements in N+

and L+ as N+ = {p1, . . . , pn−1, pn+1, . . . , pnN+
} and L+ = {l1, . . . , lnL+

}
(note that pn is not included in N+ yet).
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Step 2

Step 2 is to introduce a parametric representation of the shortest path

distance between an arbitrary point p on N+ and an existing store at pi

(i=1,. . . ,n − 1) . This representation is useful for integrating equation

(4) along links.

The parametric representation is based upon the following nice prop-

erty (Okabe, Yomono & Kitamura, 1992). The shortest path distance

between the point p and pi monotonically increases or decreases as the

point p moves along lj . It never occurs that the distance increases (de-

creases) to a certain point and then decreases (increases). Using this

property, we can parametrically represent the moving point p on a link lj

with end nodes pj1, pj2 by

d(p, pi) = d(p, pj1) + d(pj1, pi)

= (−1)δjit + cji for 0 ≤ t ≤ lj, (5)

where lj indicates the length of link lj, cji(= d(pj1, pi)) is a constant with

respect to t, and δji is given by

δji =

{
0 for d(pj1, pi) < d(pj2, pi),

1 for d(pj1, pi) > d(pj2, pi).
(6)

Step 3

Step 3 is to introduce the same parametric representation for the new

store n at pn.

Suppose that the new store n is located at a point, pn, on link la whose

end nodes are pa1 and pa2, and that the point pn is located at distance u

from pa1 along la, i.e.,

d(pn, pa1) = u. (7)

First we construct the shortest path tree rooted at pn, and obtain the

collision points. Next, we classify all links in L+ into four groups in

relation to these collision points and pn. (I) links on which pn exists but
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any collision point produced by pn does not exist; (II) links on which a

collision point produced by pn exists but pn does not exist; (III) links on

which pn and a collision point produced by pn exist; (IV) links on which

neither pn nor any collision point produced by pn exists. We denote these

sets of links by L+
I , L+

II, L+
III and L+

IV, respectively.

For each set, we can parametrically represent a moving point p on a

link lj .

Case I: p on link la ∈ L+
I (Figure 2).

On la there exist pn but no collision point produced by pn. The moving

point p along link la is written as

d(p, pn) = |d(p, pj1) − d(pn, pj1)|

=

{ −d(p, pa1) + d(pn, pa1) for d(p, pa1) ≤ d(pn, pa1),

d(p, pa1) − d(pn, pa1) for d(p, pa1) ≥ d(pn, pa1)

=

{ −t + u for 0 ≤ t ≤ u,

t − u for u ≤ t ≤ lj .
(8)

Case II: p on link lj ∈ L+
II (Figure 3).

On lj , there exists a collision point qjn produced by pn on la. In this

case as shown in Figure 3, we have two shortest paths between pn and

qjn, and these paths form a loop, denoted by C. When the configuration

of pa1, pa2, pj1 and pj2 is shown in Figure 3(a), the length, lc, of the loop

C is given by

lc = lj + la + d(pj1, pa1) + d(pj2, pa2), (9)

where lj and la indicate the length of links, lj and la, respectively. Obvi-

ously, the shortest path distance d(qjn, pn) is always equal to lc
2
, which is

given by

d(qjn, pn) =
lc
2

=
1

2
(lj + la + d(pj1, pa1) + d(pj2, pa2)). (10)
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The shortest path distance d(qjn, pj1) is given by

d(qjn, pj1) = d(qjn, pn) − d(pj1, pa1) − d(pn, pa1)

=
1

2
(lj + la − d(pj1, pa1) + d(pj2, pa2)) − u. (11)

Thus the moving point p is written as

d(p, pn) =




d(p, pj1) + d(pj1, pa1) + d(pn, pa1)

for 0 ≤ d(p, pj1) ≤ d(qjn, pj1);

lj + la + d(pj2, pa2) − d(p, pj1) − d(pn, pa1)

for d(qjn, pj1) ≤ d(p, pj1) ≤ lj

=




t + u + d(pj1, pa1)

for 0 ≤ t ≤ −u + 1
2
(lj + la + d(pj2, pa2) − d(pj1, pa1));

−t − u + la + lk + d(pj2, pa2)

for − u + 1
2
(lj + la + d(pj2, pa2) − d(pj1, pa1)) ≤ t ≤ lj .

(12)

In the same way, when the configuration of pa1, pa2, pj1 and pj2 is given

by Figure 3(b), the moving point p is written as

d(p, pn) =




t − u + la + d(pj1, pa2)

for 0 ≤ t ≤ u + 1
2
(lj − la + d(pj2, pa1) − d(pj1, pa2));

−t + u + lj + d(pj2, pa1)

for u + 1
2
(lj − la + d(pj2, pa1) − d(pj1, pa2)) ≤ t ≤ lj.

(13)

Case III: p on link la ∈ L+
III (Figure 4).

In this case, as in Figure 4, we have two shortest paths between pn and

qan, and the distance of the shortest path is shorter than the length of

the link la, i.e.,

d(pa1, pa2) < la. (14)

The two shortest paths form a loop C ′ and its length lc is given by

lc = d(pa1, pa2) + la. (15)
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Since the shortest path distance d(qan, pn) is equal to lc
2
, d(qan, pn) is given

by

d(qan, pn) =
lc
2

=
1

2
(d(pa1, pa2) + la). (16)

When the configuration of pa1, pn, qna and pa2 is given by Figure 4(a), the

shortest path distance d(qan, pa1) is given by

d(qan, pa1) = d(pn, pa1) + d(qan, pn)

= u +
1

2
(d(pa1, pa2) + la). (17)

Thus the moving point p is written as

d(p, pn) =




−d(p, pa1) + d(pn, pa1)

for 0 ≤ d(p, pn) ≤ d(pn, pa1);

d(p, pa1) − d(pn, pa1)

for d(pn, pa1) ≤ d(p, pn) ≤ d(qan, pa1);

−d(p, pa1) + d(pn, pa1) + la + d(pa1, pa2)

for d(qan, pa1) ≤ d(p, pn) ≤ la

=




−t + u for 0 ≤ t ≤ u;

t − u for u ≤ t ≤ u + 1
2
(la + d(pa1, pa2);

−t + u + la + d(pa1, pa2) for u + 1
2
(la + d(pa1, pa2) ≤ t ≤ la.

(18)

In the same way, when the configuration of pa1, qna, pn and pa2 is given

by Figure 4(b), the shortest path distance d(qan, pa1) is given by

d(qan, pa1) = u − 1

2
(d(pa1, pa2) + la). (19)

Thus the moving point p is written as

d(p, pn) =




t − u + la + d(pa1, pa2) for 0 ≤ t ≤ u − 1
2
(la + d(pa1, pa2);

−t + u for u − 1
2
(la + d(pa1, pa2) ≤ t ≤ u;

t − u for u ≤ t ≤ la.

(20)
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Case IV: p on link lj ∈ L+
IV (Figure 5).

When the shortest path from pn to pj2 goes through pa1 and pj1 (Figure

5(a)), we can write the moving point p on lj as

d(p, pn) = d(p, pj1) + d(pj1, pa1) + d(pn, pa1)

= t + u + d(pj1, pa1) for 0 ≤ t ≤ la. (21)

When the shortest path from pn to pj2 goes through pa2 and pj1 (Figure

5(b)), we can write the moving point p on lj as

d(p, pn) = d(p, pj1) + d(pj1, pa2) + d(pn, pa2)

= t − u + la + d(pj1, pa2) for 0 ≤ t ≤ la. (22)

When the shortest path from pn to pj1 goes through pa1 and pj2 (Figure

5(c)), we can write the moving point p on lj by

d(p, pn) = d(p, pj2) + d(pj2, pa1) + d(pn, pa1)

= −t + u + lj + d(pj2, pa1) for 0 ≤ t ≤ la. (23)

When the shortest path from pn to pj1 goes through pa2 and pj2 (Figure

5(d)), we can write the moving point p on lj by

d(p, pn) = d(p, pj2) + d(pj2, pa2) + d(pn, pa2)

= −t − u + la + lj + d(pj2, pa2) for 0 ≤ t ≤ la. (24)

In the above we have explicitly obtained the function d(p, pn) of t for

Cases I, II, III and IV. These functions vary from case to case, but for-

mally we can write them in the same form as

d(p, pn) = (−1)δjnkt + cjnk(u) for ljk1(u) ≤ t ≤ ljk2(u). (25)

Note that c(u) and l(u) are all linear funcitions of u.

Step 4:
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Step 4 is to integrate equation (4) on each link lj on L+.

We assume that lj ∈ L+ is divided into nj links (ljk for k = 1, . . . , nj)

at a store n at pn and at the collision point produced by pn. Substituting

equation (5) and (25) into equation (4), we obtain the demand, Dn(u),

for store n as

Dn(u) =
∑

lj∈L+

nj∑
k=1

Dnjk(u), (26)

where

Dnjk(u) =
∫ ljk2(u)

ljk1(u)

A(u, t)

A(u, t) + B(u)
w(t)dt, (27)

A(u, t) = an exp(−λ(cjnk(u) + (−1)δjnkt)), (28)

B(t) =
n−1∑
i=1

ai exp(−λ(cji + (−1)δjit)). (29)

Let Ij1 = {i | δji = δjnk} and Ij2 = {i | δji 6= δjnk}. Then, equation

(27) is written as

Dnjk(u) =
∫ ljk2(u)

ljk1(u)

an exp(−λcjn(u))

K(t)
w(t)dt, (30)

where

K(t) =
∑
i∈Ij1

ai exp(−λcji) + exp(2λ(−1)δjnkt)
∑
i∈Ij2

ai exp(−λcji). (31)

We assume that the demand density w(t) is constant on each link lj

(the density varies from link to link), i.e.,

w(t) = wj for 0 ≤ t ≤ lj, j = 1, . . . , nL+ (32)

Under this assumption, we can carry out the integration in equation (30)

and obtain

Dnjk(u) =

(
2λ(−1)δjnk ljk2(u) + log

(
an exp(−λcjnk(u))+

∑n−1

i=1
ai exp(−λcji)

K(ljk2(u))

))
wj

2λ(−1)δjnk

(
1 +

∑
i∈Ij1

ai

an
exp(−λ(cji − cjnk(u))

)

−

(
2λ(−1)δjnk ljk1(u) + log

(
an exp(−λcjnk(u))+

∑n−1

i=1
ai exp(−λcji)

K(ljk1(u))

))
wj

2λ(−1)δjnk

(
1 +

∑
i∈Ij1

ai

an
exp(−λ(cji − cjnk(u))

)
(33)
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We can exactly obtain the demand function of equation (4) as a function

of u shown in equation (33).

4 Computational Method for the Optimiza-

tion

When pn and all of the collision points produced by pn are inserted

on N+, we obtain a new network, denoted by N++ (Figure 6). The

topological relations between nodes of this network N++ depends on the

location of pn. The topology of this network N++ holds during pn moves

within a certain length along links in L+, but changes when either pn or

a collision point produced by pn passes over a node in N+ (Figure 7).

To obtain the length, within which pn moves along links in L+ so that

the topological relations holds, we construct the shortest path trees rooted

at all nodes in N+ on the network N+, and insert all of the collision

points produced by all nodes on links in L+ as nodes. As a result, we

obtain a new network N+
div (Figure 8). Let L+

div be the set of nL+
div links

of N+
div. When pn moves within each link lh ∈ L+

div, neither pn nor any

collision point produced by pn passes over a node in N+. Then, the

topological relations holds and we can obtain the amount, Dn(u), of store

n by equation (26) and (33) in the previous section. Let Xlh be the set of

location parameter u on the link lh. The locational optimization problem

of equation (4) is written as

max
lh∈L+

div

max
u∈Xlh

Dn(u) =
∑

lj∈L+

nj∑
k=1

Dnjk(u), (34)

where Dnjk(u) is given by equation (33).

Dnjk(u) is a continuous and differentiable function with respect to

u ∈ Xlh. We can obtain the local optimal solution u∗
h by a nonlinear

programming method, such as the descent method (Gill et al., 1981). In
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all of u∗
h for 1,. . . ,nL+

div , we can find the globally optimal solution, that is,

the optimal location for store n.

Now, we consider the order of the computational procedure for ob-

taining the globally optimal solution (for details, see Okabe & Okunuki,

1997).

First, to obtain the network N+ from N , we construct n − 1 shortest

path trees (in step 1 in the preceding section). The order of this construc-

tion is O(nN log nN ) under the assumption that the order of the number

of stores is less than that of nodes.

Second, to obtain the network N+
div from N+, we construct the shortest

path trees rooted at all nodes of N+. The order of the number of nodes

of N+ is O(nL), and the order of the construction is O(n2
L log nL). The

order of links of N+
div is O(n2

L).

Third, to obtain the globally optimal solution, we optimize for every

links of N+
div. The order is O(n2

L).

Summing up, we notice that the order of the total computational time

is O(n2
L log nL).

Last we show two examples. The results are shown in Figure 9 and

10. Figure 9(b) is a very simple case in which one store (store 1) is

located at an end of a link and the location of one new store (store 2)

is optimized. The second example (Figure 10) deals with a little more

complicated network on which one store (store 1) is located at a node

and the location of one new store (store 2) is optimized.

5 Conclusion

This paper shows a computational method for finding the globally op-

timal location at which the store attains the maximum demand when

users’ choice behavior follow the Huff model and the store is locatable at

any point on a continuum of a network. The solution is exact and the
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computational tool is tractable. Thus our method is useful for locational

decision in practice.
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Figure captions

Figure 1: An illustrative example of a network N with the shortest path

tree and collision points, and the modified network N+

(a) a network in which nodes are indicated by the black circles and the

location of an existing store, store 1, is indicated by the arrow

(b) the shortest path tree rooted at store 1 (the continuous lines) and

collision points (the white circles) (the lengths of two broken lines with

arrows starting from store 1 are the same)

(c) the modified network N+ obtained by inserting collision points in the

links of the network N .

Figure 2: The link la with end nodes pa1 and pa2 (the black circles) on

which pn (the white circle) exists, and an arbitrary point p (the small

black circle) moving along the link la

Figure 3: The link lj with end nodes pj1 and pj2 (the black circles) on

which a collision point, qjn (the white circle), produced by pn on la exist

(the dotted lines indicating the shortest path tree rooted at pn), and an

arbitrary point p (the small black circle) moving along link lj

Figure 4: The link la on which pn and a collision point, qan, produced

by pn (the white circles) exist (the dotted lines indicating the shortest

path tree rooted at pn), and an arbitrary point p (the small black circle)

moving along link lj

Figure 5: The link lj on which neither pn nor any collision point produced

by pn exists, and an arbitrary point p (the small black circle) moving along

link lj

Figure 6: An illustrative example of a network N++

(a) a network N+ (Figure 1(c)), on which a new store, store 2 (the white

circle), is located, and the collision points (the white squares) produced

by store 2

(b) the modified network N++ obtained by inserting store 2 and collision
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points

Figure 7: An illustrative example of changes in the topological relations

between nodes of a network N++ ((b), (c) and (d)) as store 2 moves along

the dotted line in this Figure (a)

Figure 8: The modified network N+
div obtained inserting all collision points

(the white circles) produced by all nodes of N+

Figure 9: An example of the locational optimization on a link, where the

demand density is a constant

(a) a network with two nodes (the black circles) on which store 1 exists

(b) the optimal location of a new store, store 2 (the white circle)

Figure 10: An example of the locational optimization on a network, where

the demand density is a constant

(a) a network with three nodes (the black circles) on which store 1 exists

(b) the optimal location of a new store, store 2 (the white circle)
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