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Abstract

This paper analyzes the accuracy of count data transferred from a zonal system to
an incompatible zone through the areal weighting interpolation method. To treat avariety
of situations in atheoretical framework, stochastic models representing areal weighting
interpolation are developed. The relationship between the accuracy of estimates and the
size of source zones is analytically investigated by use of a proposed model. The results
strongly suggested that smaller zones give better estimates on a wide range of zonal
systems. The effect of the shape of source zones and the target zone on estimation
accuracy is also numerically examined, and it was found to be significant as well as the
effect of the size of source zones.



1. Introduction

Social, economic, and demographic data used in GIS are usually provided in an
aggregated form based on a zonal system (Rhind 1991). In Japan, for instance,
socioeconomic data are aggregated across census tracts and municipal districts. It often
happens, however, that an analysis on the datais to be performed in a zone incompatible
with the source zones. Let us consider, for instance, a process of store site selection.
Given severa alternative sites, a market analyst draws hypothetical market areas around
the sites in which population count data are necessary for evaluating the alternatives.
Unfortunately, market areas are typically represented as circles and incompatible with the
census tracts in which demographic data are recorded. Thus the analyst has to estimate
the population within the areas from the data aggregated across census tracts. This type of
data estimation, that is, data transfer from the source zones to the target zone, is called
areal interpolation (Lam 1983, Goodchild et a. 1993), and there have been proposed alot
of areal interpolation methods in the literature (Wright 1936, Markoff and Shapiro 1973,
Tobler 1979, Goodchild and Lam 1980, Lam 1983, Flowerdew 1988, Flowerdew and
Green 1991, Goodchild et al. 1993, Fisher and Langford 1995, Burrough and
McDonnell 1998).

Data estimation through areal interpolation is inevitably inaccurate to some extent,
which is undesirable in subsequent spatial analysis. There are at least two methods to
improve the accuracy of estimates. One is to choose an areal interpolation method
yielding more accurate estimates. Intelligent methods which use supplementary data are
generally better than simple methods such as the point-in-polygon method (Okabe and
Sadahiro 1997) and the areal weighting interpolation method (Fisher and Langford
1995). It seems desirable to choose intelligent methods if suitable supplementary data,
say, remotely sensed data, are available. However, such data are not always available,
and the computing cost is problematic especially when the number of zonesisvery large.
Consequently, simple methods are still widely used in GIS.

Another method to improve estimation accuracy is to employ source data whose
zones are sufficiently small. If source zones are even smaller than a target zone, we can
obtain a highly accurate estimate. Population count data, for instance, are often available
in several zona systems such as census tracts, towns and villages, states, and so forth. It
is possible to choose the data aggregated across census tracts which have the smallest
zones among them, because they provide more accurate estimates than the others. In
practice, however, handling of spatial data consisting of small zones causes some
problems: cost of data acquisition, computation, and storage. High-resolution data are
more costly than low-resolution data, and they consume much space and time in spatial
operation including areal interpolation. Therefore, we try to choose the source data



balancing the cost of data handling and the expected accuracy of estimates.

Such data choice requires us to understand the relationship between the accuracy of
estimates and a source zonal system. There are several studies investigating the accuracy
of areal interpolation in diverse situations (Flowerdew and Green 1991, Langford et al.
1991, Goodchild et al. 1993). However, since they employed particular sets of spatial
objects and zonal systems, it remains unknown whether the results have global
applicability. One exception is an analysis based on the Monte Carlo simulation (Fisher
and Langford 1995) where a variety of zonal systems were used. Even in this study the
distribution of spatial objectsis given and the form of zone boundaries is quite limited,
thus the obtained results are not proved to be generally applicable.

The objective of this paper isto develop atheoretical framework for analyzing the
accuracy of count data transferred from a zonal system to an incompatible zone, and to
obtain some general results. We focus on the areal weighting interpolation method
(Markoff and Shapiro 1973) because it has been widely used in GIS. Other areal
interpolation methods are |eft for future research.

In Section 2, we propose areal weighting interpolation models which are theoretical
basis for the analysis of estimation accuracy. Introducing stochastic models we discuss a
set of situations by using their representative probabilistic functions. One of the modelsis
used in Section 3, where the relationship between the accuracy of estimates and the size
of source zones is analyzed. In Section 4 we perform a numerical examination of
estimation accuracy on lattice systems. Finally, we summarize the conclusions in Section
5.

2. Areal weighting inter polation models

As mentioned in the previous section, estimation accuracy depends on the situation,
that is, the source zonal system, the target zone, and the point distribution, which has
impeded a general discussion of this subject. One solution to the problem isto perform a
computed-assisted simulation of areal interpolation processes (Fisher and Langford
1995). This approach, however, has some limitations. First, because of its computational
cost, the realized situations are quite limited. Areal interpolation of count data depends on
the above three factors, and it isimpossible to try numerous situations varying in all the
factors. Second, a simulation-based approach is not directly connected with a theoretical
analysis. Suppose, for instance, the relationship between the accuracy of estimates and
the size of source zones. Performing computed-assisted simulations we can obtain
numerical information on this relationship, say, a correlation coefficient. However, this
result is not supported by a firm theory, and thus the applicability of the result still
remains unknown.



To overcome these difficulties, we propose two stochastic models which we call
the areal weighting interpolation models as a framework for analyzing estimation
accuracy. We replace avariety of situations by their representative stochastic models, and
discuss the models rather than individual situations. By this we can avoid
computationally expensive simulations to consider numerous situations.

Among the factors affecting the accuracy of estimates we are most concerned with
the source zonal system. Hence the source zonal system is given and fixed in models.
The shape and size of the target zone are also given. In contrast to these factors, the point
objects are assumed to follow a probability distribution, which is a representative of
diverse distributions. The location of the target zone also follows a probability
distribution. We should note that, however, the location of points and the target zone can
be fixed by adopting a suitable probability distribution, if a specific situation has to be
considered.

2.1 Basic model

Suppose a source zonal system S, aregion Zp of area Ag which consists of K zones
Z1, Z, ..., Zx (Figure 1). The area of Z; isdenoted by A;. The region Zg represents, say,
a county, and each zone corresponds to a census tract, a school district, or a postal zone
by which count data are reported. A target zone T of area B in which count data need to
be estimated, say, a hypothetical market area, is assumed to be randomly dropped in such
a way that it intersects Zg (Figure 2). The location of T is represented by a binary

function
M if xOT

" otherwise’

In the region Zp, N points (say, population) are independently and identically
distributed according to a probability density function f(x). The location of point j is
denoted by y;.

C(x) (1)

Figure 1 A source zonal system S. Gray-shaded area represents the region Zp.
Figure 2 Possible locations of the target zone T (the ellipses). Gray-shaded area
represents the region Zp. Note that the target zone is not necessarily wholly contained in
Zo.

Let us consider the areal weighting interpolation in the above setting. The number
of pointsin T isgiven by

Mzzcm) )

Thisvalue is unknown to an analyst and has to be estimated through the areal weighting



interpolation as follows. Suppose a function U; (x) defined by
M if xdz

U (x) = . 3
X %) otherwise )
The number of pointsin Z; is

n =ZUi(yj). 4

The areal weighting interpolation assumes that the points are uniformly distributed in each
zone. Therefore, given the number of points for every zone, we have an estimate of M,

Mzzmq

J CX)d ©
x)dx
= Iz XDZ'T Z Ui (yJ )
Estimation error of M is given by
e=M-M
IXDZ (6)

-5 o) 550 s u )
In the areal weighting interpolation models, the estimation error € changes
stochastically because the point objects and the target zone are located according to

probability distributions. To evaluate the error, we adopt the mean square error (M SE) of
€ as ameasure defined by

MSE[S] = E[¢?]. ©)
The calculation of E[€?] is shown in Appendix A1, thus we show only the result.
MSE[S] = N(N - 1I J’ (t)Pr[x O t OT]dxdt
+NI (x) Pr[x OT]dx
1
-2N(N —1)2 X.[xuzi ItDZ IXmZD x)Pr[x Ot OT]dxdt

—lez% [0 [y FOOPTX Ot O]

N(N-D)F zﬁ [ [y PIXOEOTIC ()] F(X)x

+NZ J’IDZJ’ Pr[thDT]dxdtI )ax

)
Equation (8) contains the probabilities Pr[x0T] and Pr[xdtOT] which are not
explicitly given. These values can be computed as follows.



Let m(T; Zo) be the measure of the set of all figures congruent to T intersecting Zo.
The probabilities Pr[x[IT] iswritten as

_ 2iB
If both T and Zy are convex, m(T; Zp) is given by
m(T:Z,) = 2r(A, + B) + RP;, (10)

where Py and Pt are the perimeters of Zg and T, respectively. Otherwise, computation of
m(T; Zp) requires anumerical simulation or a spatial sampling.
The probability Pr[xtT] is given by
a0 7] = 1) (12)
m(T;Z,)

where m(T; |) isthe measure of the set of all figures congruent to T containing two points
separated by a distance I. If T has a simple shape, m(T; I) is represented by an explicit
form (for details, see Santal6 1976, Sadahiro 1999). For instance, if T is acircle of
radiusr,

ol o_ lar2 — |2
m(T:1) = 5471 arceos, - i 1> (I< 2r),. (12)
Q 0 (I>2r).
For arectangle of sidesb, c (b < c), we have
O 2rbec - 4(b +c)l + 217 (I<b),
Dzm\F—b2—4d—2bP+4macgn? (b<l<c),
D 2 2 2 2 2 2
m(T:1) = Hc1? -0 +4b\1? —¢* —2(b* +¢* +1%) | (13)
(C<| <+/b? +C2),
. C bO
D+4bc%rcsm|— - ar(:cosl—D
O
0 0 (Vo +c2 <1},
If T has more complicated shape, m(T; 1) is numerically computable by using
82
m(T:1) ==~ (), (14)

where gr(l) is the probability density function of the distance between two points that are
randomly distributed in T (derivation of equation (14) is shown in Appendix A2). The
function gr(l) can be easily obtained in GIS: 1) overlay a square lattice on T, 2) calculate
the point-to-point distance for all pair of grid pointsin T, 3) make a histogram of the
distance.

2.2 Periodic continuation model
The basic model proposed in the previous subsection allows us to evaluate the
estimation accuracy of areal weighting interpolation in diverse situations. Calculation of



equation (8), however, is sometimes computationally expensive because calculation of
Pr[xOT] may require numerical simulations. To reduce the computational cost, we
propose another areal weighting interpolation model which we call the periodic
continuation model.

The model setting is amost the same as that of the basic model. We hence describe
only the differences.

1) The region Zy has such a shape that can cover a plane by its lattice (Figure 3).
Rectangles, parallelograms, and regular hexagons meet this requirement.

2) Theregion Zg is surrounded by its copies, and the copies have the same zonal system
and point distribution as those of Zy (Figure 4). This assumption is often called periodic
continuation (Ripley 1981, Stoyan and Stoyan 1995).

3) If T does not completely lie in Zy, we replace the portion of T outside Zg by its
corresponding figure as shown in Figure 5. We then assume that all possible shapes and
positions of T appear randomly.

Figure 3 Possible shapes of the region Z (the upper row). It is confirmed from the lower
row figures that those shapes satisfy the requirement 1).
Figure 4 The region Zy and its surrounding copies.
Figure 5 Transformation of T.

In the above setting we have

Pr{x OT] = % (15)

Substituting equation (15) into equation (8), we obtain



MSE[S] = N(N-2)f [ f(x)f(t)Pr{x Ot OT]axct

uB O

+NEKE
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—ZNZ Afmz [, fOOPAX 0t OT]axet

+N(N —1)2 ij'mz J’sz_l Prix Ot DT]dthLmz f (x)dx - f(x)dx
Z LDZ J’XD Pr[x Ot DT]dxdtJ' )ax
(16)
The probability Pr[x[JtJT] is given by
x0T =y mIx=u) (17)
ullQ(t) Zwa

where Q(t) is aset of points corresponding to t in the surrounding copies of Zy (Figure
6). Equation (16) then becomes

MSE[S] 277)% ItDZO Ixmzo u%tgn(-r;')( - u|)dth
0O

+NEEE
- 1
) TA) z_.[XDZ‘ ItDz _[xDz0 uD;t) T |X U|)dth
npb Z A .rtDZ IXDZ Z(t) T |X u|)dth
ZTA) z z AA .ItDz Ixmz Z T |X u| dthI x0Z, (X)dX
i 277;0b 2 Eﬁuzi fiw, %tgn(ﬂx ~ul)dxatf £ (x)ox

(18)
Note that equation (18) does not contain the term m(T; Zg) whose computation often
requires a numerical simulation. The measure m(T; |) is easily computable as mentioned

earlier, and so isMSE[S. The periodic continuation model is more tractable that the basic
model.

Figure 6 Point located at t and the set of its corresponding points Q(t) in the surrounding



regions (Gray-shaded area represents the region Zg).

The choice of the above two models depends on the case. Concerning the model
setting, the basic model is more flexible than the periodic continuation model. The latter
puts some additional assumptions, and there may be the case where they are not
acceptable. If the assumptions are allowable, the periodic continuation model would be a
better choice because it is computationally less expensive. Moreover, since equation (18)
is more simple than equation (8), the periodic continuation model seems more suitable for
an analytical investigation of estimation accuracy.

3. Accuracy of estimates and the size of sour ce zones

Having defined the areal weighting interpolation models, we are now ready to
analyze the accuracy of estimates. In this section we take an analytical approach to the
relationship between the estimation accuracy and the size of source zones.

We consider the case where the points (say, population) are distributed in the
region Zg according to the uniform distribution. Thisimpliesthat in a statistical sense an
even distribution of population is assumed in Zy. Formally, the assumption is represented
as

F(x) = %. (19)

Indeed, this assumption scarcely holds in a strict sense. However, analyzing the case of
uniformly distributed points would be helpful in considering a variety of point
distributions, especially for those analogous to the uniform distribution.

From the two available models we choose the periodic continuation model because
of itstractability. Substitution of equation (19) into equation (16) yields

MSE[S] = N(N —1)%%5 o fo PAIX Ot DTt

UB

U
+NEA—bE
-2N(N _1)%52.[@ .[xmzo Pr[x O t OT]dxdt

1 1
_NEZKLDZiLDZi Pr[X D t DT]dth

#N(N -1)%%5 5 3 fuo fuw PIX O DT

(20)

Noticing that



2 fi Jup, PrIX Ot OT]okdt = [ [ Prix Dt OT]ea, (21)
and that
Z z fiz o Pr[x O t OT]dxdt = [ fim. Pr[x O t OT]dxdt, (22)

we obtain

- nivi
MSE[S] = N OnH N A z A [ g PHIX Ot OT bl -
.

- % EB - % 3 % fafen D;t:n(ﬂx - u|)dxdta

Equation (23) indicates that the M SE does not depend on the spatial arrangement of
zonesin Zy. Three zonal systems shown in Figure 7 have the same M SE.

Figure 7 Zona systems having the same MSE.

Using equation (23), we anayze the relationship between the accuracy of estimates
and the size of source zones. To this end, we consider three typical zonal systems: the
hierarchical zonal system, the zonal system consisting of sets of congruent figures, and
the lattice system.

3.1 Hierarchical zonal systems

Socioeconomic data are often aggregated in a hierarchical zonal system. Population
count data, for instance, are available at various levels of hierarchy, say, census tracts,
towns and villages, and states. In a hierarchical zonal system, a higher level system is
obtained by combining several zones of alower level system (Figure 8).

We now have a question whether a lower level zonal system, that is, a system
consisting of smaller zones, really yields more accurate estimates than a higher level
system . In other words, we wish to examine whether the combination of zones lowers
the estimation accuracy.

Figure 8 A hierarchical zona system.
Suppose hierarchical zonal systems S; and S, where S; is at the lower level of S,.

We assume for simplicity that S; consists of two zones Z; and Z,, while S; consists of
zone Zy. The MSE's are given by
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MSE[S] = AP m Z N fiz Jiv u ;tgn(TJx - u|)dxdt5

(24)
_ N 1 O
= EEB_ .ZKJ-‘DZ‘ IXmZi Pr[x Ot DT]dxth
and
N 1 O
MSE[S| = APTA fioz Jica, PIX Ot DT]dxth, (25)
respectively. From these equations we have
AMSE = ME[S | - MSE§]
1 O
D_ﬁmz [, PAXOtOT]dxdt
1 1 |:|
D 26
=N o [ [, PixOt 7]t (20
Ab 0 Az t0z, Jx0z, D
E_Eftuzofxuzo Pr[x Ot DT]dxth
After afew steps of calculati on eguation (26) becomes
2
U
AMSE = x)dx — C(x dx] 27
AR E A AL, g @7
and thus
AMSE = 0. (28)

Thisindicatesthat S, is better than S, with regard to the mean square error.

The above discussion can be easily extended to a hierarchical zonal system
consisting of more than two zones, which leads to a conclusion that in any hierarchical
system alower level system always gives asmaller MSE than a higher level system. Itis
desirable to choose a lower level system in a hierarchical zona system regardless of the
shape and size of the source and target zones.

3.2 Zonal systems consisting of sets of congruent figures

We next consider the zonal system that consists of sets of congruent figures.
Suppose a zonal system S, the region Zy consists of m types of figures (Figure 8a). We
denote the covering ratio of typei figuresas a; (a1+ao+...+ay =1). The MSE of this
systemis given by

MSE[S]:%EB—%T L. Ixuz.Z (Tix - u|dxdtg (29)

We then suppose azonal system S, the region Zg consists of only typei figures (Figures
8b and 8c). The mean square error MSE[S] is given by

10
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MSE[S]_E 277A LDZLDZ Zt) (T;)x = ul dxdtg (30)

From equations (29) and (30) we obtain
MSE[S] = § a,MSE[S]. (31)

As seen in equation (31), MSE[S] is given by the linear combination of MSE[S]'s
weighted by the covering ratio (Figure 8). This implies that the MSE of a zonal system
consisting of sets of congruent figures lies among MSE's of zonal systems consisting of
al congruent figures. The following inequation holds for the zonal systems shown in

Figure 9.
MSE[S] < MSE[S] < MSE[S | (32)

Figure 9 A zonal system consisting of sets of congruent figures.

3.3 Lattice systems

Count data aggregated into a lattice form are now widely used in GIS. It sometimes
happens that severa lattice data are available differing in the cell size though not having a
hierarchical structure (Figure 10). To treat such a case, we analyze the relationship
between the accuracy of estimates and the cell size of alattice.

Figure 10 L attice systems differing in the cell size.

Suppose two lattice systems L, and L, whose cells are similar in shape but
different in size. The unit cell and its area of L; are denoted by Z; and A;, respectively
(A1<A). We assume that Z is still larger than T so that the following equation holds for
any x and t in both Z; and Z.

Z :n(T;|x —ul) = m(T;}x - t]). (33)

The MSE of Ly isgiven by

N 1 0
MSE[L] =~ [B- 2 fiofie m(T;|x - t|)dxdt% \ ”
A) ol Om(Tina

where gz, (1) is the probability density function of the distance between two points which
are randomly distributed in Z;. Similarly,

MSE[L,] = %@—% 0. Om(T:na] (35)

Noticing that Z, and Z, are similar in shape, we have

11



O/A 0
922 I _gz1 E\ El E (36)
Substitution of equation (36) into (35) ylelds

MeE(L] = B Ao, Ain(ra

- (37)
N1 a3
_Ajﬂ% ZITLOQZI m T'JAiI I%
From equations (34) and (37) we have
AMSE = MSE[L,| - MSE[ L]
(38)

:%J’:ngl(l)gm(ﬂl)— mET;\/%l %r

Since /A, / A >1 and gz (l) =0 for any I, AMSE is positive if m(T; I) is a
monotonic decreasing function of |. The condition is satisfied at least when the target
zone T is convex. The reason for thisis as follows. The measure m(T; I) is equal to the

measure of the set of all point pairs separated by adistancel in T. If T is convex, m(T; |)

is al'so equal to the measure of the set of all line segments of length | in T. The set of
possible locations of aline segment of length /A, / Al includes the possible locations of

aline segment of length | (recall /A, / A >1). Therefore, an inequation

m(T;l) = mET;\/%IE (39)

holds for any I. Inequation (41) indicates that m(T; |) is a monotonic decreasing function
of I, and consequently AMSE is aways positive. From this we can say that it is desirable
to choose alattice system consisting of smaller cellswhen T is convex.

Unfortunately, theoretical approach appears difficult in case of non-convex T. We
thus experimentally computed the M SE for non-convex T such as U-shape, T-shape, and
H-shape using numerical calculations, yet AMSE was always positive in all the cases.
The MSE seems to increase monotonically with the cell size even if T is non-convex,
though it still remains unproved.

In this section, we have analytically investigated the relationship between the size
of source zones and estimation accuracy. The obtained results strongly suggest that the
M SE decreases as source zones become smaller. From this we can say that smaller zones
give better estimates on awide range of zona systems. Though this has been reported on
an empirical basis (say, Fisher and Langford 1995, Cockings et al. 1997), it is
meaningful to prove it on atheoretical basis because it warrants the global applicability.

12



4. Numerical examination of estimation accuracy on lattice systems

In this section we analyze the effect not only of the size but of the shape of source
and target zones on estimation accuracy. To this end, we numerically examine the
accuracy of count data estimated on lattice systems. We focus on the lattice system
because it is widely used in GIS. It should be emphasized, however, that any zonal
system can be numerically analyzed in asimilar way.

We follow the approach taken in the Subsection 3.3, that is, we employ the
periodic continuation model, assuming that the points are uniformly distributed and that
the region Zy is still larger than the target zone T. The MSE of alattice system L isgiven
by
NBL B » gz, (g (1) O

MSE| L dio 40
[ ] A 0 27‘[ 1=0 | % (40)
Let 1 be the expectation of the number of points contained in T, that is,
u=E[M]. (41)
From equations (2) and (A 4) we obtain
O
u=Ecy Cly;)o
j B (42)
- NB
A
Substituting equation (42) into equation (40), we have
O
MSE[L] = H B gzl % ( )dl . (43)
27'[ 1=0 |:|

In this section we fix the values of N, Ap, and B, in order to focus on the effect of the
size and shape of source zones on estimation accuracy. Thisimplies that p in equation
(43) is constant. The area of the target zone T isset to 1.

4.1 Square lattices

We first examine the square lattice, a zonal system consisting of a set of congruent
squares. For the shape of the target zone T, we consider the circle, square, and six types
of rectangles whose ratios of the vertical to the horizontal length (denoted by v/h ratios
hereafter) are 2, 3, 4, 8, 16, and 32.

The relationship between MSE[L] and the cell sizeisillustrated in Figure 11. As
shown in the previous section, MSE[L] monotonically increases with the cell size. It
increases rapidly at smaller cellswhile dowly at larger cells.

Figure 11 The relationship between MSE[L] and the cell size of the square lattice.
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Numbersin circlesindicate the v/h ratios of rectangular target zones.

Let usturn to the effect of the shape of T. Figure 11 shows little difference between
MSE[L] of the circle T and that of the square T. However, when T is a rectangle,
MSE[L] increases as T becomes elongated. The shape of T clearly affects the accuracy of
estimates. Concerning the cell size, we can say that alattice consisting of small cellsis
desirableif T has a oblong shape. Suppose, for instance, that we want to keep MSE[L] at
0.5u. The cell size needs to be smaller than 0.46 if v/h=4, while 0.77 if T is a square.
When T is a rectangle of v/h=16, a lattice of cells smaller than 0.16 is necessary. This
implies that, if we want to estimate the count data in a rectangular area of v/h=16, the
amount of required source data is approximately as five times large as that of the data
required for the estimation of a square area. Attention should be paid to the size of source
zones when the target zone has a oblong shape, say, the buffer zone of aroad.

4.2 Regular lattices

There are three possible regular lattices on a plane, that is, triangular, square, and
hexagonal lattices. The strength and weakness of these |attices have been discussed in the
literature (Burt, 1980; Star and Estes, 1990; Okabe and Sadahiro, 1997). We compare
these lattices from the viewpoint of estimation accuracy. For the shape of T we try the
circle, square, and four types of rectangles whose v/h ratios are 4, 8, 16, and 32.

Figure 12 illustrates the relationship between MSE[L] and the cell size of the
lattices. Since regular triangles and hexagons are convex, MSE[L] of the lattices
monotonically increases as the cells become larger. The relationship between MSE[L] and
the cell size on the triangular and hexagonal lattices looks similar to that on the square
lattice. Especially the square and hexagonal lattices show quite similar results regardliess
of the shape of T, though the hexagonal lattice always gives a dlightly smaller MSE[L]
than the square lattice.

Considering the result and the tractability of spatial database, we can say that the
square lattice is practically the best choice among all possible regular lattices. This
conclusion is compatible with that reported in Okabe and Sadahiro (1997).

Figure 12 Comparison of the regular lattices. Numbersin circles indicate the v/h ratios of
rectangular target zones.

4.3 Rectangular lattices

We finaly investigate the rectangular lattice. Though the rectangular lattice is not
popular, the analysis will help us to understand the relationship between the accuracy of

14



estimates and the shape of source zones.

In the analysis we consider five types of lattices consisting of rectangles whose v/h
ratios are 2, 3, 4, 8, and 16. For the shape of T, we adopt the circle, square, and six
types of rectangleswhose v/h ratios are 2, 3, 4, 8, 16, and 32.

Let us examine Figures 13a and 13b, which depict the relationship between
MSE[L] and the cell size on the rectangular lattices of v/h=4 and 16, respectively. Both
figures are similar in general to Figures 11 and 12: the effect of the cell size on MSE[L]
decreases as cells becomes large; MSE[ L] increases as the shape of T becomes el ongated
from the circle and the square to the rectangles.

Figure 13 The relationship between MSE[L] and the cell size of the rectangular lattice.
The v/h ratios of the rectangular cellsare (a) 4, (b) 16. Numbersin circlesindicate the v/h
ratios of rectangular target zones.

Figure 14 compares rectangular lattices varying the v/h ratio of the lattice cells.
Interestingly, the effect of the cell shapeisvery similar to that of the shape of T: MSE[L]
increases as cells become elongated.

Figure 14 Comparison of rectangular lattices. The v/h ratios of the rectangular target zone
are (a) 1 (square), (b) 4, (c) 16. Numbersin squares indicate the v/h ratios of rectangular
cells.

From the above results, we notice that estimation accuracy is significantly
influenced by not only the size but the shape of cells and the target zone. Estimates
become inaccurate as the shape of cells and the target zone becomes elongated, which is
compatible with the results reported in Cockings et al. (1997). Unfortunately, it seems
difficult to give atheoretical explanation on this relationship, yet an intuitive discussion
based on integral geometry is possible as follows.

Let usconsider alattice L of unit cell Z. We denote the area and perimeter of Zas A
and P, respectively. A target zone T of area B and perimeter Pt is dropped randomly on
thelattice L.

Suppose that T is now overlaid on L as shown in Figure 15. Estimation error in
count data occurs only in the cells intersected by the boundary of T (dark gray cellsin
Figure 15). Hence it is supposed that estimation error increases with the number of cells
intersected by the boundary of T, which is denoted by K.

Figure 15 A locational relationship between the lattice L and the target zone T.
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The expectation of Kk isgiven in an analytical form as below (Santal6, 1976).
Elx] = 2n(A+B)+P.P
21A

Assuming A and B fixed, we find that E[K] increases monotonically with P and Pr.
These perimeters are minimized when Z is aregular hexagon and T is a circle, which
consequently gives the minimum of E[k]. AsZ and T become elongated, both P and Pt
increase and so does E[K]. Therefore, we surmise that an increase of P and Pt makes the
estimate inaccurate.

Certainly the above discussion is somewhat vague. However, it helps us to
understand intuitively the relationship between the accuracy of estimates and the shape of
cells and the target zone.

(44)

5. Concluding discussion

In this paper we have analyzed the accuracy of count data transferred from a zonal
system to an incompatible zone through the areal weighting interpolation method. We
proposed areal weighting interpolation models on a stochastic basis as a framework for
handling a variety of point distributions and locations of the target zone. Using an areal
weighting interpolation model, we analyzed the relationship between the accuracy of
estimates and the size of source zones where points followed the uniform distribution.
The results suggest that smaller zones give better estimates on a wide range of zonal
systems.

In the previous section we performed numerical examinations of estimation
accuracy on lattice systems. We focused on the shape and size of lattice cells and the
target zone, and found that not only the size but the shape of cells and the target zone
significantly affects the accuracy of estimates. We discussed the effect of the shape in
relation to the perimeter and suggested that it may be partly explained from the view of
integral geometry.

Analytical and numerical investigations of estimation accuracy assumed that points
were randomly distributed in the region, which may be unrealistic in some cases. We
should emphasi ze, however, that this assumption is not essential as seen in the setting of
the areal weighting interpolation models. The models are applicable when the points
follow anonuniform distribution.

The areal weighting interpolation models have wide applicability, yet they have
some limitations. We finally discuss them for further research. First, the models assume
that a target zone is randomly distributed. This assumption does not always hold in
gpatial analysis. Recall a process of store site selection mentioned in the introductory
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section. The process includes repeated areal interpolations which estimate the popul ation
within the market area. However, the distribution of proposed sites is usually
nonuniform, which does not satisfy the assumption. A model to treat nonuniformly
distributed target zones should be developed. Second, the models consider only the areal
weighting interpolation method. Though this method is simple and its algorithm runs so
fast, it often gives inaccurate estimates as reported by Fisher and Langford (1995). If
source data are not available which have a resolution high enough for areal interpolation,
intelligent interpolation methods should be attempted. Areal interpolation methods other
than the areal weighting interpolation need to be modeled and evaluated.
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Appendix Al
The expectation of €2 is given by the following equation.
E[gz]:E[MZ]—zE[MM]+E[|\7|2] (A 1)
We separately derive the three termsin the above equation.

E[MZ]:E%C(%)EF%

:Eélzc(yj)c(yj.)g . (A 2)
= 2}; E[C(yj)C(yj.)] * Z E[C(yj)]

Since the points are independently distributed, equation (A 2) becomes

E[M?] = ZZE[C ]E[c Y, ] ZE[C ] (A 3)
Using
Elc(y,)] =Py, DT]
(A4)
—I (x) Pr[x DT]dx
we have
E[M?] = N(N _1)[Ixmz f(x) Pr[x DT]dx}2 +NJ _ H(x)Prlx OT]dx
= N(N —1)ItDZ LDZ f(x)f(t)Pr[x Ot OT]dxdt + NJ’ (x) Pr[x DT]dx
(A5)
L et us proceed to the second term of equation (A 1).
. f C(x
E[MM] =E it (y, %
=3 z]z% SJ = C(x)dxé
_ 1 O (A 6)
= 22 2 XE[U (yl)]ngDz. C(yJ )C(x)dxE
+Z %J’xmz E[U‘(yi)C(yl)C(X)]dX
Substitution of
E[u(y,)|=Ply, Oz
ol =nl ) .
:LDZ‘ f (x)dx
and
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ngmz C( ) de=I E[C x)]dx
[ Prl(y, D) n (dt OT) n (x OT)|dtax ~g
o Py, Didt] Pr{dt 0 x OT]dtox

—J’ - Imz t)Pr[t O x OT]dtdx
yields
E[MN] = N(N—l)Z%LD o[, [, fOP{tOx OT]etox

1
Y 5 E[U, (v, ey, Jox)]ax
The second term of the above equation becomes
E[Ui(yj)C(yj)C(x)] = Pr[(yj 0Z 0 T)n (x DT)]

(A9)

e Pr[(yj Odt) n (dt OT) 0 (x DT)]dt. (A 10)
:Imz, f(t)Pr[t O x OT]dt

Thuswe have

E[MNI] = N(N-3F [, 16, , [, TOPTEOx 0Ttk
(A 11)
+NZ%J’XDZJ:DL f(t)Pr[t O x OT]dtdx

Thethird term of equation (A 1) iswritten as

C(x) dx C dei(yj)Ui.(yj,)

0
:Z.ZZZE;:DZ AR E
:ZZALAEQ'D C(x)ex [, , Clx dX§ZE[U (v, )ui (v, )]
:ZZZﬁEQXD Ch)oxf, dxaE[U y,)|E[u: (v, )]
+Z ZﬁEB’mZi C(x)deDZivC X dx§J E[Ui y; JU; yj)]

Substituting equation (A 7), we have

. (A12)
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£[W?] = N(N -1) z ziEgmzi Clax,, COax, , (X[, T(x)ax
+Z Z B’ o[ C(x)dx§J E[Ui(yj)ui.(yj)]
N(N -1) Z Z ﬁ fiz o E[C(x)C(t)]cxlt fi f(x)dx | f(x)dx
" Z%ngﬂz. C)ax[,,, c:(x)dx§l E%ui(yj)}zg
=N(N-D)F Eﬁ [ [y PIXOCOTIK] | f(x)aX | f(x)ae

+Nz Imz,[ Pr[thDT]dxdtJ' )ax

(A 13)
Using equations (A 5), (A 11), and (A 13) we obtain
E[e’] = N(N - ] (t)Pr{x O t OT]dxdt
toz,

+NIxuz0 x) Pr[x OT]dx

2N(N-1Y 1 [, fO0X[ [, f()Px Ot O]t
—ZNZ A,rtmz,rmz x)Pr[x O t OT]dxdt

N(N -12) Z ZA_ALDZ I - Pr[x Ot DT]dxdtJ' 2 f(x)deDZiv f(x)dx.

+NZ LDZI Pr[thDT]dxdtJ’ Jax

(A 14)
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Appendix A2
Suppose aregion T of area B and two points that are independently and randomly

distributed in T. We denote the location of the points by the vectors x and t, and consider

afunction

o if x—t| <l

Dixt1) = otherwise -

(A 15)

The probability distribution function of the distance between the two points is written as
_ 1
G (I —gj’mj’xm D(x,t,1)dxdt . (A 16)

The function gr(l), the probability density function of the distance between the points, is

given by
d

() =56:0)

. [+d)-G(I)O
:L'ETE)EGT( dl) Gr()E : (A 17)
+d) =
_ é!,,i['},ﬁm . D(x,t,1 d(ljl) D(x,t,1)
We then turn to the measure m(T; |), which is equivalent to the measure of the set of
all point pairs separated by adistance | in T. To derive m(T; 1), we first fix one of the
points at X and examine possible locations of the other.
Obviously, the location of the movable point is restricted on the arc I, which is
given asthe union of acircle of radius | centered at x and the region T (Figure Al). Thus
we have

dxdt

(Iﬂim)%{n(l rdlf - %) =lim [ Dx,t.1 + d(;? DD (a1g
where 8(x, 1) istheincluded angle of I". The left side of equation (A 18) isrewritten as
|imm{n(| +d) - %) = IimM{ZIdI +di?)
d-o 27T d-o 2 . (A 19
=10(x,1)
Substitution of equation (A 19) into equation (A 18) yields
H(X’I):%L,im,ﬁm D(X’t’|+dc|jl)_D(X’t’l)dt. (A 20)
The measure m(T; |) isgiven by
m(T;1) :J'Xme(x,l)dx. (A 21)

Substitution of equation (A 20) into equation (A 21) yields
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m(T;!) :IxDTG(x,I)dx

= tlimf DOt +d) = DOGLI) g (A 22)
xOm | di - oJtar dl

:}“mj. D(x,t,I +dI) - D(X’t’l)dtdx
| di—oJxorJiar dl

From equations (A 17) and (A 22) we have

m(T;!) =}Iimj D(x.t,l +dI) - I:)(X’t’l)dxdt
| di - oJtor JxaT dl

i (A 23)
=2 6.0)

Figure A1 Thearc I defined by the union of acircle of radius| centered at x and T.
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